Bifurcation analysis in a discrete-time single-directional network with delays

نویسندگان

  • Shangjiang Guo
  • Xianhua Tang
  • Lihong Huang
چکیده

In this paper, we consider a simple discrete-time single-directional network of four neurons. The characteristics equation of the linearized system at the zero solution is a polynomial equation involving very high-order terms. We first derive some sufficient and necessary conditions ensuring that all the characteristic roots have modulus less than 1. Hence, the zero solution of the model is asymptotically stable. Then, we study the existence of three types of bifurcations, such as fold bifurcations, flip bifurcations, and Neimark–Sacker (NS) bifurcations. Based on the normal form theory and the center manifold theorem, we discuss their bifurcation directions and the stability of bifurcated solutions. In addition, several codimension two bifurcations can be met in the system when curves of codimension one bifurcations intersect or meet tangentially. We proceed through listing smooth normal forms for all the possible codimension 2 bifurcations. r 2007 Elsevier B.V. All rights reserved. MSC: 34K18; 34K20; 92B20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Article Bifurcation Analysis for a Two-Dimensional Discrete-Time Hopfield Neural Network with Delays

A bifurcation analysis is undertaken for a discrete-time Hopfield neural network with four delays. Conditions ensuring the asymptotic stability of the null solution are obtained with respect to two parameters of the system. Using techniques developed by Kuznetsov to a discrete-time system, we study the Neimark-Sacker bifurcation (also called Hopf bifurcation for maps) of the system. The directi...

متن کامل

Bifurcation Analysis for a Two-Dimensional Discrete-Time Hopfield Neural Network with Delays

A bifurcation analysis is undertaken for a discrete-time Hopfield neural network with four delays. Conditions ensuring the asymptotic stability of the null solution are obtained with respect to two parameters of the system. Using techniques developed by Kuznetsov to a discrete-time system, we study the Neimark-Sacker bifurcation (also called Hopf bifurcation for maps) of the system. The directi...

متن کامل

Neimark-Sacker Bifurcation For A Discrete-Time Neural Network Model With Multiple Delays

In this paper, we investigate a discrete-time neural network model with multiple delays. By analyzing the corresponding characteristic equation of the system, we discuss the stability and the existence of Neimark-Sacker bifurcation for the model. Applying the normal form method and the center manifold theory for discrete time system developed by Kuznetsov, we derive the explicit formula for det...

متن کامل

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

Vehicle Directional Stability Control Using Bifurcation Analysis of Yaw Rate Equilibrium

In this article, vehicle cornering stability and brake stabilization via bifurcation analysis has been investigated. In order to extract the governing equations of motion, a nonlinear four-wheeled vehicle model with two degrees of freedom has been developed. Using the continuation software package MatCont a stability analysis based on phase plane analysis and bifurcation of equilibrium is perfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008